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RESPONSE OF A ROTATING PROPELLER
TO ARRODYNAMIC EXCTTATION®

By Walter E. Arnoldil
SUMMARY

The flexural vlbratlon of a rotating propeller blade with clamped
shenk 1s analyzed with the obJjéct of presenting, In matrix form, equations
for the &lastlc bending moments In forced vibration resulting from aero—
dynamic forces appllied at a fixed miltiple of rotationsal speed. Matrix
equatlions are alsc derlved which define the critlcal speeds and mode
shapes for any exciltatlion order. end the relatlion between critilcal speed
and blede aengle. Reference 1s glven to standard works on the mumsrical
solution of matrix squations of the forms derived.

The use of a segmented blade as an approximation to a conbtlnucus
blade provides a simple means for cobtalning the matrix solution from the
integral equation of equilibrium, so that, In the numericel application
of the method presented, the several mabtrix arrays of the baslc physilcal
characteristics of the propeller blade are of slmple form, and their
simplicity 1s preserved until, wlth the sclubtiom in sight, mumerical
manipulations well-known in matrix slgebra yleld the deslred critical
gspeeds and mode shapes from which the vibration at any operating conditlon
may be synthesized.

A close correspondence between the famillsr Stodola method and the
metrix method is polnted out, lhdlcating that any features of novelty
are characteristic not of the anaslyticel procedure but only of the
ebbreviatlion, condensatiom, and efficlent orgenization of the numerical
procedure made possible by the use of classlicel matrix theory.

INTRODUCTION

This report presents s theoretlcal analyslis of the flexural vibra—
tion of an alrcraft propeller blade subJected to harmonic asrodynamic
exciting forces at a fixed midltiple of propelier rotatlional frequency.

*'I'his report 1s a reproduction of Hemilton Standsrd Propellers?
report No. HSP-613, of December 11, 1947, with scme slight
modificatlions to conform more nearly to NACA form.
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Most direct practical application ig found in the calculation of response
to rotational frequency excltatlon below the first mode resonent frequency,
but the snalysis also provides a means for studying critical speeds at |
any frequency order. However, since current Interest is cemtered on tha
former applicatlon, cgupling of blade bending and torsion 1s neglected as
being of 1ittle lmportance when operating far below the first torsional
naturel frequency, and demping is likewlsgs ignored. Initial offset and
sweep are also neglected, although their effects cannot be dimmissed as

& generallty. ' :

The propeller blade in this snalysie is clemped at the shank, that
is, constrainsd ec that at some fixed location near the cemter of rotatlon
only uniform rotatlionsgl motlon ie possible. This condition of end fixity
is chosen in asccordance with the obJect of applying the results of the
snalysis to the particular case of vibraﬁ}on in response to alr strean
angularity, where a propeller of three orf more bladees vibrates in an
unsymmetrical mode which fulfills this condition. The "reactionless modes”
occurring in propellers of four or more blades are alsgo covered by this
boundary conditlion. The system 1s furthermore assumed to be linear,
with emall vibratory dlsplacements, and simple bending theory 1s used,
since the twlst in conventlional propeller blade designs 1s moderate.

The differential equations of equilibrium are first derived and
transformed Into integral equations, and they are then examined Iin the
form of a matrix equation for a segmented blade, which permite the
oevaluation of vibratory response, critical speeds, snd normal modes by
gimpls classical methoda which are particularly attractive because the
solution in nmumerical form follows the symbolic form very closely.

PEIT.OSOPHY OF ANATYSTS

Tt must be recognized at the outset that the mathematlical description
of the vibration of a twisted, rotating, tapered beam, subJected to
distributed vibratory loading, ie essentially & complicated process, ani
that care must be taken to avoid deallng with expressions sc cumbersome
and involved in notetlon that the physical meanings of the wvarious terms
are completely hidden. The enalysls here presented attempts to avoid
guch difficulties by using tha concise abbreviations provided by simple
matrix algebra, setting up matrix srrays of physlcal quantities wherever
possible, and separating the operations of Integraticn and differentiatlion
from the physlcal quantitles by the use of operational symbols in matrix
form. It is thus poasibls to avold writing large arrays of simultaneocus
equatlions, replete with mmitiple Integrale, which might otherwise tend to
disguise, through thelr camplexity, the basic manipulations leading to &
solution. 3By using corclse matrix terminology, the problem leg reduced Lo
a clasgical form of equation which can easily be solved to yleld such
fundamental information as the critical speeds and normal modes of the
vibrating syotem. As in simpler, nonrotating systeme, a knowledge of the
normal modes and critical frequencies is sufficient to syntheslze the
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response of the system to an aerodynamic excliltaebtion at any operating

condition.
ILTST OF SYMBOIS AND UNRITS

x blade station radlus, inches

1 blade tip radius, inches

¥y blade vibratory displacement, scalar, also matrix column, Inches

(1\] circular frequency of vlbratlon, radlasns per secand

circulaer frequency of rotatlon, radlans per second

p mass per unit length of blade, also dlagomal matrix, pound—
seconde? per inch?

B Young!s modulus, pounds per inch®

I blade secﬁion moment of inertia, scalsr, also diagonal matrix,
inches _

6 blade section angle from plane of rotatlion, radians

B blade angle at reference statlion, radlans

e twist matrix of sln 6 and cos @

Q section shear force, pounds

M section bending moment, scalsr, alsc columm matrix, pound—
inches

T centrifugal tension, scalar, also diagonal mabtrlx, pounds

F applied air force per unlt length, scalsr, also columm mabtrix,
pounds per inch

s ~integral operator, scalar, slsc matrix as defined later, inches

D derivative operator, scalar, slso matrix as defined later, incheg™L

T altered centrifugsl tension matrix, S;%T’ pound—secondg®

o} frequency matrix, geconds™2
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P frequency order, o/Q
qap frequency order matrix
curvature, scelar, alsc columm matrix, inches™
n nmumber of blade segments
I unit matrlx
A scalar frequency pasrameter Iin matrix equations, seconds™2 -
k modal column (moments), pound—inches
K modal row (curvetures), inches ™
u dynamic matrix, seconds™2
J orthogansl wnit matrix, J° = —I

Bubacripts and matrix configurations sre explasined in the text and
diagrems. Metrix notatlon follows the conventloms generally adopted In
reference 1, where possible.

EQUATIONS OF EQUILIBRIUM

The forces and moments acting upon a differential blade element,
in the plane of rotation, are shown by figure 1. The differemiial
equations of equilibrium are found by separately summing horizontal
forces, vortical forces, and moments from this diagram. Egullibrium of
forces in the dlrection of the x—exis is expressed by

dT + Qpx dx = O (1)

and in the y-direction, by
\q2 =
aﬁpydx+dQ+Fd.x+(I)npxdx+d(‘I%) 0 (2)
while the moments are summed by

Qdx + dd = O (3)
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fram which may be wrltten the three dlfferential equations of
equilibrium,

§+n2px=0 (&)

(92+m2)py+§+3'+g';('l%)=0' (5)
aM

Q+E=O (6)

Equation (4) may be integrated to obtaln the centrifugal temsion
at any point along the blade

T
T=02f px ax’ (7

X

Integrating equation (6) and substituting the expression for Q,
derived by integrating equation (5) gives

M=(n2+402)fzdszpydxarﬁdxfzf'dx—flT%ax (8)
x X X

X X

For vibration normasl to the planse of rotation, the equilibrium
dlagram of figure 1 would be altered only by the change iIn direction
of the centrifugsl force, ﬂgpx dx, which would then be parallel to
the x—exis. This eliminates the fourth term of equation (2), for

vibration normel to the plane of rotatlon. The equation of moments
1s then

M=a?fdxfpydx+fdxfl‘dx—f'l‘%§dx - (9)
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where it must be understood that the M, y, and ¥ symbols represent
different quantities from those used in equaticn (8).

Now condense the notation by Introducing the following operatlonal

symbole:
sf(x) = uéf £(x) ax

e (x) = j;f(x)

Since equatioms (8) and (9) shall henceforth be used as simultanecus
equations, introduce also subscripts p and r  to denote quantities
referred, respectlvely, to vibrations normal to the plane of rotation
(parallel centrifugal field) and in the plane of rotation (radial
centrifugal field). Equations (8) =nd (9), in reverse order, then
become

M, = PPpyy + s?F, — STD,,
(10)
M, = (@2 + oP)sPpy, + SR, — 9Dy,

Further to condense these equaetions; it is convenlent to apply a
matrix notation, Iin which . - .

]
I

o 0
L) =7 s F = ¥ s =
Yo ;i TEr {;:} P Fﬁ} PTlo a4

. o B ol B oo
p s T s 5= s D
0 p o T . |0 & 0 D

The symbols, o, T, S, and D may be used either as matrices or as
metrix elements without ambiguity, since the equations in which they
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wlll be used willl make thelr meanings evident. The matrlx equation 1s
thus

Mpy = qasepypr ¥ sEFPr — SIDy,, (11)

In order to golve this equatlion for bending moments in terms of applied
ailr loads, it 1s necessary first to eliminate the deflections,'ypr s b¥Y
meansg of en additionsl moment—deflection relatiomehinp.

T

FLEXURAL: RIGIDITY OF A TWISTED BEAM
Simple bending theory provlides the scalar relatlon,

M = EIC

which applies to an untwlsted beam, where bending takes place aboub ane

of the princlpal axes of inertla. This relation willl be used in the
twlsted propellier blade, bubt 1t will be necessary to trenseform the

moment and curvature from the twlsted coordinates defined by the principal
axes to the untwisted pr coordinates. Denoting moments about the

minor axils.of inertia by the subscript, £ (for "flatwise" bending), and
moments sbout the major axis by e (for "edgewlse" bending), the
coordinate transformatlion may be written as follows, referring to the
orientation of axes shown In figure 2.

1‘%6=Mpr

_!
where

cos 8 —sIn 6
sin 8 cos 0
The curvabure, expressed as a vector columm matrix, may likewlse be

transformed in the same fashion —
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and these coordinate transformations may be introduced into the moment—
curvature relation, ) o

Mpe = ElpeClpq

My = EIfBQCPr

whence

Cpp = T2(EIp,) e,

But the curveture, in untwisted coordinates, is glven by the sscond
derivative of the deflectiom.

Cpr = Dzyrr

Thersefore

Py = L) o

The curvatures may be integrated to obbtaln deflections, using the
opereator,

pir(x) =fx £(x) dx
0

which, although an integral operator, differs fram the S already
defined, due to the necessity for integrating curvature and slope fram
the crigin outward. The desired relation between mcment and deflection
1s then : ' ’

-

- D@

i

(% E_{,J & MPr

pr
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Substituting this into equation (11) ylelds

Mpr = CPSep:'j—ee_l(E:':;‘:‘e)_lel%:c‘ + 'Sanr — sTop2g 1 (Elfe)~l%

My = (962002 - sTo D)6 (BLp, ) ety + SPF (12)

This is an inbtegrsel equatlion in operational matrix form, with x as an
Independent varieble, relating elastic hendling mcments to applled asero—
dynsmlic forces. It can be solved by any of several methods, but this
rresentation will be confined to the dlscusslon of a solutlon

obtalned by considering the propeller blade divlided into a finlte number
of hinged segments. Thle treatment has the advantage of simplicity In
directly reducing the matrix operators, S, D, and D +to convenient
numerical form.

SEGMENTED BLADE

Consider the application of equation (12) to a propeller blade
divided Into n equal segments, having lts distrlibuted mass divided
proportlionately among the hinge points and having perallel springs
across each hinge to represent the edgewise and flatwise flexibllities.
The operators, S, D, and D_'l,' cen then be deflned in series form, as
follows: :

sf(x;) = fz £(x) dx = i £(xy) ox

X3 J=1

_ £(xy) — £(G43)

pr(y) = Se(x) =
=] Xq i
D e(xy) = ] £(x) ax = % £(x;) Ax
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The subscript ncmencleture associated with these definitions is
described by flgure 3. Note that, because the moments In the segmented
system are esach cne station removed from the forces which they equilibrate
in accordance with equations (1), (2), and (3), the subscriptes for
moments and Inertlaes differ from the subscripts for masses, deflectlians,
alr forces, and centrlfugal tenslons at each statlom.

There may be wriltten n simmltaneocus equatiome, corresponding to
the n hinge points, in place of each of the two similtanecus equations (10).
Instead of writing them separstely, they will be combined into a single
metrix equation by using the following conventlioms.

r N - .
M, (xo) yp(x1) Fp(xp)

My = Mp(x) 0, 7y = 7y (x0) o By =qFale2) L
My (xn3 ) | yp(xn)J P (xs)
0y 0~ 0] 7, 0-0] 111-1

pP=|0py;—0 |, T={0T, —0) S=4Ax[011~-1]f,

- — _— 001-1
0 0-—-1T,
O O— — = - [ v e e e
B Pn |
000-1
- 7 ' -1
1 0 0-00 100-0
1 1 0-0 0 __ 110-0
D=§ ,Dl=Ax
0-1 1-0 0 111-0
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Similar definitions apply to the r—coordinates. Note that oL 1s
+truly the matrix reciprocal of D. Equations (10) thern are simultaneous
matrix equations of n—order, and equation (12) will involve second—order
metrices with n—order matrix elements, or, more conclsely, equation (12)
wlll became a 2n—order matrix equation. As an example, the twlst matrix
now becomes '

cos 03 0 0 - .0 -sin 69 0 - - 0
0 cos 92 0 - 0 0 —ain 62 —_— - 0
0 o) cos 93 - 8] - - - - -
0 0 0 — cos 6p 0 0 - — —sin 8,
e o=
sin 67 0 - - 0 cos el 0 - - 0
0 gin 6o - - 0 o) cos 6o - - 0
0 o - - s8ln 6, o 0 — — cos 6,

end the gtiffness ma.trix is
— . =
@) O - - - o o -- -

0 p(x)) - - - 0 0 - - -
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It is importent to note that the reciprocals indicated in equation (12)
are also of simple form, @< ©being the transposed of @ , and (Ife)"l
being a dlagonal matrix of the reciprocals of the individual inertia
elements. Furthermors, DL is the trensposed of S.

Since, in propseller vibration studles, the bending moments referred
to principal axes are directly related to measursble quantitles, equa—
tion (12) shall be rewritten in the fe coordinates, whence

Mp, = 8(ps®pD2 — STD™ 1)e~L(EIpe )_lee + 656 lrg, (13)

In solving this equetion for resonant conditions 1t wlll be necessary
elther to choose a fixed rotationael speed and find the natural frequenciles
or to choose a propeller vibration order (mltiple of rotational speed)
and find the critical speeds. Adoptling the latter procedure and
letting P = ‘g, write

[ 2 0 - -] o 0 - ~ ]

0 P - = 0 0 - —

- - - P2 - — - - .
¢ = o° = "o

0 0 - - (P +1) 0 - - P

0 0 - - 0 (P +1) — -

- - - - - - - (1)
L

Also abbrevlieting the alr moment columm,

eo(®) = ooz,

glves

Mpo = 9% (ppRan-2 — sTo LYo (BIpo ) Ltipe + Mo )
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Solving for Mp,

(- st - s ) e,

Mre

1

&

Letting A

u = 8(p,S2eD e — s L)L (B, )t (k)

Mpe = MMT — u)_lee(a) (15)

Numerical quantities can be substituted into equation (15), and
the bending moments caused by epplied slr moments at a predetermined
rotational speed and frequency order may be dlirectly calculeted.
Another form of solution, obtained by the use of Sylvester®s Theoremn,
wlll often be more useful. This theorem, which provlides a serles
expansion of & matrix polynomial, applied to equatian (15) ylelds

ED. x *
Mpg = ; o (z) (16)
r= -

where M(r) is a normal mode moment component of L&e(a), obtained in
terms of the model row and columm azssoclated wlth a Jatent root, A,
from the relations,

(17)

1}
o

(AT — u)kn

k(AT —u) = 0 (18)

*Mhe subsceript r -1s used henceforth to denote any of the 2n modes of
the segmented system. This preserves simllerity with matrix notation
In reference 1 and should cause no ambigulty, since the pr coordinates
do not appear egaln in the report.
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M) o (e )i e M () (19)

Equations (17) and (18) are known alternatively as the "cherec—
teristic equations” of a matrix, u, and are typlcal of problems in
which there is an independent parsmeter, such as vibration frequency,
as well asa group of coordinate dependent varisbles. The "latent roots,"
or values of the perameter for which there is a solutlon, and the
coordinate values assoclated with each of these roots are frequently the
solution desired, hence many classical methods are available for
numerical solutions. In the case of the vibrating propeller blade
represented by the characteristic equation (17) , the lmtent roots of
the matrix, u, are critical speeds ?strictly, reciprocals of critical
speeds squared) and the model columms, k,., are the bending-moment

distributions corresponding to the natural modes for the critical speeds.
The modal rows, Ky, defined by equation (18), are the corresponding
curvature distributions, as will be shown.

KNumerical methods for determining the modal rows, columms, and
roots are described In detall In reference 1. In the case at hand, the

labor involved can be reduced by deriving a relation between the modal
row and columm, first forming the transposed of equation (17).

Xp' (I —ut) = 0

Equation (1h) stated,

u = oppspr? — s (mpe)

Since
8'=8_l_, SI=D—1‘,QP'=¢P’ pl=p’ ™ =1

and

(eze D) - eyt
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it follows that

gﬂ
n

(EIp,) e (¢Ps2pp—€ - s-rn—l) gl

(EIfe)_l'l (EIfe)

whence
it (o — @) u(@es)) = 0
and.
kpt (BIge) ™ (AT — u)(ELgy) = 0

! BLpe) T (T — u) = 0
Thus, the modal row 1ls related to the modal columm by the equation,
oy = ket (BTpe) (20)

which shows that the modal row 1s a curvature distribution, since the
modal column, from which 1t is here derived, setisfles the equetion for
the elastic moment.

EFFECT OF BLADE ANGELE ON CRITICAI: SPEEDS

For smaell chenges in blade angle, the changes In critical speeds
can be found wlthout recalculating wu for a new blade angle. A partial
derivative of the characteristic equation (17) may be formed as follows:

(A I —ule, =0

3 d
Q%T—I - g%‘)kr + (ApI -u)a—zﬁ =0
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Premultiplying by k,, the second term vanishes, leaving

Srpr _duY,
n!_(aBI 38 kyn = 0

OAy "
3 (e rler) v, gjh_r (21)

whence

Now examine u and find i1ts derivative.
u = o(®82a02 - sro )6 (BIpe)

.aa% - -g% (2520072 — s D) (mr,, )2

gt -
+ opys2pp2 — st 3 (Ezee) 2 (22)
Since
cog B —gin 6 - cbs 0 8in 9'
8 = R e~ =
sin 8 cos 6 —ain @ cos @
and d6 = dp

—cos 8 —gin 6

38 [—-sin 6 —cos 6:] 38_1 ]i—sin 6 cos @

=]
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Iet
0o I
g =

- 0

then

—1
o8 _

3B »

Substituting these derivatives into equation (22),

%é =~ + u(ELpe )T (BT, )t

Premultiply by K. and. postmiltiply by k., so that

o B, = e, + 1 (e )3T i

B -

and by making use of the characteristic equation agein, u 1s eliminsted.

By g—sk‘r = —rdApky, + "r"r(EIfe)J(EIfe)—lH
The second term can be simplified by noting, from equation (20),
that : .
Kr' = (EIfe)—lkr
and

kr' = “'r(EIfe)
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whence

K S5 as =i, = M (ReTky + TR

But, since thie 1s & scalar equation, the elements In eny term may be
transposed, so that

kr‘JK'.r' = —E&‘Jk:r

and

gr~§§ k., = —2Apkpdky

whence, equation (21) beccmes

SF = Pl e (23)

As & last refinement, note that

axl‘ _ aﬂr 1 r

oB 9B -7 nrII J8

2
oQ,. __ 1 N 291-2("1-1‘1-)_1" Jc,
BB )\TE aq B o
oq,, =
ﬂ_r gﬁ" = (Rpkep) | (24)

This relationshlp makes it possible to make use of a solution,
obtalned for asny arbltrary blade angle, to find the nature of the varia—
tion In critical speed with variations in blade angle, at least for a
small renge in angle. It 1s Interesting to put this equation Into an
integral form for the dlstributed system, by noting the meanings of the
operations indicated by equation (24). The scalar, Kk, 18 a sum of

r
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the products of each pair of curvatures and moments and hence represents
twice the strain energy in a naturel mode, so that, in terms of scalar
moment elements, Mp and M., there may be written

nz,krsfzgdx+f Ejdx

Furthermore, the operator, J, has the effect of interchanging flatwlse
and edgewise (f and o subscrip'b) quantitles, so that

and the chenges In criltical speed may therefore be expressed as a function
of a small change in blade angle by the following scalar equetion of
definite integrals eveluated at the critical speed:

ZM_EM ZMM,E
fo ﬁf—edx L T d.xaB o)
1 1 2
ﬂr /; Ef—]:h+£ 1'--l-'l—d:x:

This useful relationship might have been obtained by other msthods,
but the presentation here glven has seemed the most strelghtforwerd to
the writer.

RNUMERTCAT, GOMPUTATTONS

The foregolng analysis hasg provided several eguations in matrix form
which may be employed dlrectly in numerical work. After forming the
basic arrays of physical quantities and cawbining them to obtain the
matrix, u, and the columm, Mfe(a'), equation (15) may be solved for the
vibratory bending moments at the n blade stations by methods such as
proposed by Altken (reference 2) in order to find the nonrescnant regponge
of the propeller to the applied air forces at a glven frequency order.
If the critical speeds are desired, the characteristic equation (17}, may
be solved by repeated premultlplication of an arbitrary columm, as
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described in reference 1, and by this means the bending-moment distribu~—
tion of the normal mode 1s alsoc obtained. The normal mode curvature
distrlbution may be found by similar postmuliiplicatiion of an arbitrary
row, according to the characteristic equation (18), or directly from the
moment columm, by equatlon (20). The critical speeds, normal mode
colums and rows, and the applied alr moments may be gathered together in
equation (16) in order to express the resultant vibratory bending momenta
ag functions of rotational speed.

For numericel purposes, it 1s often convenient to expand equation (16)
in a form whlch will converge more repidly, thus reqpiring the calculation
of fewer mode shapes. It 1s easlly shown that

- Mgl 5wl (26)
r=

which follows from observing that

& (r) (a)
lim Mpy = éé;; M = Mpq

-0
(A —<)

Since the matrix, u, Includes an arbitrary blade angle, the
numerical solution in terms of normal modes and frequencies ylelds
complete informatlion at a given frequency order only for a aingle blade
angle; however, for emall variastions in blade angle, equation (2k) may
be used to determine the effect om critlcal speeds wlithout going through
a completely new solution.

In computing critical speeds for a fixed vibration order, 1t.should
be noted that same of the 2n latent roots, An, may be negative. In the

particular case of first—order vibratlons, not more than one of these
roots will, in general, be positive. The occurrence of negatlive roots
implies Imeginery critical speeds, which are difficult to plcture as such,
but may appear more loglcal if treated as the positive criticael speeds
which would exist were the cemtrifugal forces and inertila forces to be
reversed. This condition 1s probably more easily understandeble for the
speclal cage of P = O, when the negative roots correspond to critical
gpeeds for seversl modes of buckling under reversed centrifugal forces.
Figure U4 presents a sketch of the natural frequency spectrum of a propeller
ag a function of rotational speed, using frequency squered along each
axis, so that the negetive roots appear as intersections in the third
quadrant. , .
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STODOLA'S METHOD

In the calculation of nstural frequencies in problems involving the
vibration of beams, the Stodola process 1s often employed. This is
normally a method by which a deflection curve is assumed and uséd to
calculate the inertia loading, which is then successively integrated
along the length of the beam In order to obtaln the shear, moment, slope,
and a new deflection shape. The new deflection curve 1s then carried
through the same process ageln, and repeated lteratlons finally converge
on the true mode shspe, wlth an Increase 1n amplitude through sach itera—
tlon in proportion to the lowest natural frequency. After solving for
the lowest mode and fregquency, higher modes can elso be found, but since
there 1s a tendency for the fundamental mode to became more prominent
through each lteretliomn, it 1s necessery to employ the orthogonality
relations in order to eliminste the unwanted mode or modes in each
higher mode solution.

The Stodola process could also be used with an sssumed moment distribu—
tion, carrying through each serles of Integratlions to obtain an Improved
moment mode shape, emnd 1t 1s Interesting to note that the solutlion of the
matrix equation (17) for its latent roots and modsl columms is very closely
related to this type of Stodola process. Premultiplication of an
arbitrary moment columm by u, upon examination of the definition of wu,
equation (14) s includes In a lumped form the several steps of successlively
Integrating the curvature, slope, loading, and shear, including centrif—
ugel tension effects, to obtain an Improved moment distrlbution, and the
comparison of successive mode shapes, after convergence has been attained,
yields the lowest nabturel frequency in the form of the dominant latent
root. The process of modifylng the u—matrix in order to eliminate the
dominant mode end permit solution for the subdominant root, when care—
fully examined is found to provide & new metrlix which represents the same
serles of operatlons during each lteration, wlth the additlon of an
"orthogonalizing" step included in each iteration. Use of the Stodola
process in this mamner has long since been successfully accomplished at
least in the somewhat simplified case of a nonrotating untwisted beam
(reference 3). The rotating, twisted propeller blade requires numericel
calculatlions of larger volume and hence greater dlfflculty, but no new
principles are Involved.

The matrix method of calculation, therefore, ls not baslcally novel,
but represents & technique for orgenizing in an efficlent msnner the
miltitude of operations Involved 1n a largs—scale numerical calculatlion.
One of its strongest attractlons 1s thet it permlits & proper perspective
t0o be malntained not only In the analytical phases of the problem butb
also throughout the numerical work.
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Flgure 1,- Equilibrium of forces and moments on a differentin]l element~-in
plane of rotation (radial centrifugal fleld).
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‘Figure 2.- Orientation of twisted (fe) coordinates in relation to untwisted
(pr) coordinates.
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Figure 3.- Nomenclature of segmented blade,
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Figure 4.- FPregquency spectrum of rotating propeller.






